บทที่ 3

วิธีการดำเนินงานโครงงาน

โครงงานเรื่องการวิเคราะห์ข้อมูลการใช้ไฟฟ้าในบ้านที่อยู่อาศัย ในปี 2564–2565 เพื่อใช้ ในการเผยแพร่ข้อมูลบนเว็บไซต์ ในบทนี้จะเป็นการวิเคราะห์ข้อมูลด้วย เทคนิคทางดาต้ามายนิ่ง ซึ่งมีกระบวนการวิเคราะห์ที่สำคัญหลายขั้นตอน เมื่อเสร็จสิ้นจากกระบวนการวิเคราะห์ข้อมูลแล้ว จะเป็นการออกแบบเว็บไซต์ และออกแบบรูปแบบการแสดงผลและบทสรุปจากวิธีการดำเนินงาน

3.1 การวิเคราะห์ข้อมูลด้วย CRISP-DM

- 3.2 แผนภาพบริบท (Context Diagram)
- 3.3 แผนภาพกระแสข้อมูล Data Flow Diagram
- 3.4 ความสัมพันธ์ของข้อมูล (ER-Diagram)
- 3.5 การออกแบบเว็บไซต์
- 3.6 บทสรุป

ภาพที่ 38 บทที่ 3 กรอบแนวคิดของโครงงาน

3.1 การวิเคราะห์ข้อมูลด้วย CRISP-DM

ภาพที่ 39 บทที่ 3 กระบวนการวิเคราะห์ข้อมูล ด้วย CRISP-DM

กระบวนการวิเคราะห์ข้อมูลด้วย CRISP-DM หรือ Cross Industry Standard Process for Data Mining พัฒนาขึ้นในปี ค.ศ. 1996 โดยความร่วมมือของ 3 บริษัทคือ Daimler Chrysler, SPSS และ NCR ที่มีการพัฒนาเป็น Workflow มาตรฐานสำหรับการทำเหมืองข้อมูล ประกอบด้วย 6 ขั้นตอนหลัก ดังนี้

3.1.1 รู้จักและเข้าใจในธุรกิจ (Business understanding) เป็นขั้นตอนแรกของกระบวนการ ที่มุ่งเน้นไปที่การทำความเข้าใจกระบวนการทางธุรกิจโดยรวม

ผู้วิเคราะห์ข้อมูลทำความเข้าใจกับปัญหาให้อยู่ในรูปของการวิเคราะห์ข้อมูลทางดาต้าไมน์ นิ่งโดยการวิเคราะห์ข้อมูล การใช้ไฟฟ้าในบ้านที่อยู่อาศัย ในปี 2564-2565 เพื่อใช้ในการเผยแพร่ ข้อมูลบนเว็บไซต์ ซึ่งเป็นข้อมูลที่มีจำนวนมากและทำให้ซับซ้อน

3.1.2 จัดเก็บและรวบรวมข้อมูลให้ครบ (Data Understanding) ขั้นตอนการจัดเก็บ และ รวบรวมข้อมูล ตลอดจนการพิจารณาตรวจสอบความถูกต้องของข้อมูลที่ได้รับ โดยเลือกว่าจะใช้ ข้อมูลทั้งหมดหรือบางส่วนในการวิเคราะห์ให้สอดรับกับวัตถุประสงค์ที่กำหนดไว้

ผู้วิเคราะห์ข้อมูลได้ทำการเก็บรวบรวมข้อมูลจากเว็บไซต์ https://www.pea.co.th/จากนั้น จะทำการตรวจสอบข้อมูลที่ได้ทำการรวบรวมมาได้ เพื่อดูความถูกต้องของข้อมูล และพิจารณาว่า ข้อมูลการใช้ไฟฟ้า จะใช้ข้อมูลทั้งหมดหรือจำเป็นต้องเลือกข้อมูลบางส่วนมาใช้ในการวิเคราะห์

ภาพที่ 40 บทที่ 3 เว็บไซต์ https://www.pea.co.th ที่ให้ข้อมูลการใช้ไฟฟ้า

ซึ่งข้อมูลการใช้ไฟฟ้า มีจำนวน 3147 รายการ ประกอบด้วย 9 แอตทริบิวท์ ข้อมูลหลัก ๆ จะประกอบด้วย ปี จำนวนหน่วย จังหวัด ขนาดมิเตอร์ไฟฟ้า ประเภท เป็นต[้]น

1 id	1	เดือน	อำเภอ	จังหวัด	ประเภท	จำนวนวัดด์	หน่วย	ขนาดมิเดอร์				
2	1	2564 มกราคม	-	เชียงใหม่	บ้าน		1023 กิโลวัตต์/ชั่วโมง	30(100)A				
3	2	2564 ภุมภาพันธ์	-	เชียงใหม่	บ้าน		1030 กิโลวัตต์/ชั่วโมง	30(100)A				
4	3	2564 มีนาคม	-	ล่าปาง	บ้าน		1178 กิโลวัตต์/ชั่วโมง	30(100)A				
5	4	2564 เมษายน	-	น่าน	บ้าน		1320 กิโลวัตต์/ชั่วโมง	30(100)A				
6	5	2564 พฤษภาคม	-	น่าน	บ้าน		1301 กิโลวัตต์/ชั่วโมง	30(100)A				
7	6	2564 มิถุนายม	-	น่าน	บ้าน		1236 กิโลวัตต์/ชั่วโมง	30(100)A				
8	7	2564 กรกฎาคม	-	เชียงใหม่	บ้าน		1268 กิโลวัตต์/ชั่วโมง	30(100)A				
9	8	2564 สิงหาคม	-	เชียงใหม่	บ้าน		1241 กิโลวัตต์/ชั่วโมง	30(100)A				
10	9	2564 กันยายน	-	เชียงใหม่	บ้าน		1177 กิโลวัตต์/ชั่วโมง	30(100)A				
11	10	2564 ตุลาคม	-	เชียงใหม่	บ้าน		1221 กิโลวัตต์/ชั่วโมง	30(100)A				
12	11	2564 พฤศจิกายเ	1 -	เชียงใหม่	บ้าน		1175 กิโลวัตต์/ชั่วโมง	30(100)A				
13	12	2564 ธันวาคม	-	แพร่	บ้าน		1166 กิโลวัตต์/ชั่วโมง	30(100)A				
14	13	2564 มกราคม	-	แพร่	บ้าน/กิจการ		448 กิโลวัตต์/ชั่วโมง	30(100)A				
15	14	2564 ภุมภาพันธ์	-	แพร่	บ้าน/กิจการ		453 กิโลวัตต์/ชั่วโมง	30(100)A				
16	15	2564 มีนาคม	-	แพร่	บ้าน/กิจการ		518 กิโลวัตต์/ชั่วโมง	30(100)A				
17	16	2564 เมษายน	-	แพร่	บ้าน/กิจการ		553 กิโลวัตต์/ชั่วโมง	30(100)A				
18	17	2564 พฤษภาคม	-	เชียงใหม่	บ้าน/กิจการ		542 กิโลวัตต์/ชั่วโมง	30(100)A				
19	18	2564 มิถุนายม	-	เชียงใหม่	บ้าน/กิจการ		528 กิโลวัดด์/ชั่วโมง	30(100)A				
20	19	2564 กรกฎาคม	-	เชียงใหม่	บ้าน/กิจการ		553 กิโลวัดด์/ชั่วโมง	30(100)A				
21	20	2564 สิงหาคม	-	เชียงใหม่	บ้าน/กิจการ		539 กิโลวัดด์/ชั่วโมง	30(100)A				
22	21	2564 กันยายน	-	เชียงใหม่	บ้าน/กิจการ		516 กิโลวัดด์/ชั่วโมง	30(100)A				
23	22	2564 ตุลาคม	-	เชียงใหม่	บ้าน/กิจการ		536 กิโลวัดด์/ชั่วโมง	30(100)A				
24	23	2564 พฤศจิกายเ	1 -	เชียงใหม่	บ้าน/กิจการ		515 กิโลวัดด์/ชั่วโมง	30(100)A				
25	24	2564 ธันวาคม	-	น่าน	บ้าน/กิจการ		529 กิโลวัดด์/ชั่วโมง	30(100)A				
26	25	2564 มกราคม	-	เชียงใหม่	อุดสหกรรมขนาด	i .	2854 กิโลวัดด์/ชั่วโมง	30(100)A				
27	26	2564 ภุมภาพันธ์	-	เชียงใหม่	อุดสหกรรมขนาด	1	2798 กิโลวัตต์/ชั่วโมง	30(100)A				
28	27	2564 มีนาคม	-	เชียงใหม่	อุดสหกรรมขนาด	1	3219 กิโลวัตต์/ชั่วโมง	30(100)A				
29	28	2564 เมษายน	-	เชียงใหม่	อุดสหกรรมขนาด	1	3080 กิโลวัตต์/ชั่วโมง	30(100)A				
30	29	2564 พฤษภาคม	-	ວດຮດີດຄ໌	อดสหกรรมขนาด	1	3301 กิโลวัตต์/ชั่วโมง	30(100)A				
							1 9/	- 9/	9/			

ภาพที่ 41 บทที่ 3 ข้อมูลดิบการใช้ไฟฟ้า

3.1.3 เตรียมข้อมูลให้พร้อมใช้ (Data preparation) ขั้นตอนการแปลงข้อมูลที่ได้รวบรวมมา และเลือกไว้ ให้อยู่ในรูปแบบที่พร้อมสำหรับนำไปวิเคราะห์ในขั้นตอนต่อไปได้ โดยการทำให้เป็น ข้อมูลที่ถูกต้อง (Data cleaning) มักใช้เวลาค่อนข้างมาก โดยมีขั้นตอนดังนี้ 3.1.3.1 ทำการคัดเลือกข้อมูล (Data Selection) คือการคัดเลือกข้อมูลที่เหมาะสม เพื่อนำมาใช้ในการวิเคราะห์ข้อมูล

ผู้วิเคราะห์ข้อมูลทำการคัดเลือกข้อมูลโดยการทำ Data Cleaning ข้อมูลรายงานการใช้ ไฟฟ้า โดยแยกข้อมูลออกและตัดส่วนที่ไม่จำเป็นออกให้เหลือเฉพาะข้อมูลที่จำเป็นในการวิเคราะห์ ในภาพรวม จำนวน 4 แอตทริบิวท์ ได้แก่ ปี จังหวัด ประเภท ขนาดมิเตอร์ ซึ่งเป็นข้อมูลที่จำเป็นใน การนำไปวิเคราะห์ข้อมูล

1	meter	type	level				
2	NO	house	М				
3	NO	small industry	M				
4	NO	agriculture	М				
5	NO	agriculture	M				
6	NO	house	M				
7	NO	house	Μ				
8	NO	small industry	M				
9	NO	small industry	Μ				
10	NO	agriculture	М				
11	NO	agriculture	M				
12	NO	agriculture	M				
13	NO	agriculture	М				
14	NO	small industry	S				
15	NO	small industry	S				
16	NO	house	S				
17	NO	agriculture	S				
18	NO	house	S				
19	NO	small industry	S				
20	NO	house	S				
21	NO	small industry	S				
22	NO	small industry	S				
23	NO	house	S				
24	NO	agriculture	S				
25	NO	small industry	S				
26	NO	agriculture	L				
27	NO	small industry	L				
28	NO	agriculture	XL				
29	NO	except	XL				
30	NO	small industry	XL				

ภาพที่ 42 บทที่ 3 ข้อมูลรายงานการใช้ไฟฟ้าที่ทำการคัดเลือกข[้]อมูลแล้ว

3.1.3.2 ทำการกลั่นกรองข้อมูล (Data Cleaning) คือการทำความสะอาดข้อมูล เป็นกระบวนการตรวจสอบและการแก้ไข (หรือลบ) รายการข้อมูลที่ไม่ถูกต้องออกไปจากชุดข้อมูล ตารางหรือฐานข้อมูล ซึ่งเป็นหลักสำคัญของฐานข้อมูล ทางผู้วิเคราะห์ข้อมูลได้ดำเนินการดังนี้

 ข้อมูลรายงานการใช้ไฟฟ้า ผู้วิเคราะห์ข้อมูลได้ทำการแก้ไขและลบข้อมูล ซึ่งผู้วิเคราะห์ ข้อมูลพบว่า ข้อมูลทั้งหมดนั้นมีจำนวนที่เยอะจึงเลือกส่วนหัวข้อย่อยในแต่ละแอตทริบิวท์มาเท่านั้น ดังนั้นผู้วิเคราะห์ข้อมูลได้ดำเนินการดังนี้

– จังหวัด (Province) มี 9 หัวข้อย่อย ผู้วิเคราะห์ พบว่าควรตัด หัวข้อย่อยที่มีรายการน้อย จึงทำการลบทิ้ง และมีหัวข้อย่อย 3 หัวข้อย่อยที่มีมาก คือ เชียงใหม่, น่าน, แพร่ ดังนี้

₽↓	เรียงลำดับจาก ก ถึง อ	
₹↓	เรียงลำด <u>ับ</u> จาก ฮ ถึง ก	
	<u>เ</u> รียงลำดับตามสั	Þ
*	ล้างต <u>้ว</u> กรองออกจาก "จังหวัด"	
	กรอง <u>ต</u> ามสั	Þ
	ตัวกรองข้อ <u>ด</u> วาม	Þ
	ด้นหา	Q
\checkmark	(เลือกทั้งหมด)	^
	···· 🗌 เซียงราย ···· 🖌 เฮียงในน่	
	พะเยา	
		~
	ตกลง	ยกเลิก

ภาพที่ 43 บทที่ 3 ทำการกลั่นกรองข้อมูล ปี เพื่อนำไปวิเคราะห์

 ประเภท (Type) มี 7 หัวข้อย่อย ผู้วิเคราะห์ พบว่าควรตัด หัวข้อย่อยที่มีรายการน้อย จึง ทำการลบทิ้ง และมีหัวข้อย่อย 4 หัวข้อย่อยที่มีมาก คือ เกษตรกรรม, บ้าน, ยกเว้นค่าไฟฟ้า, อุคสหกรรมขนาดเล็ก ดังนี้

<u> </u>	, เรีย <u>ง</u> ลำดับจาก ก ถึง ฮ
Z,	, เรียงลำดั <u>บ</u> จาก ฮ ถึง ก
	เรียงลำดับตามสั
5	<
	กรอง <u>ต</u> ามสั
	ตัวกรองข้อ <u>ค</u> วาม
	ดันหา
	 ■ (เลือกห้ะหมด) หายตรกรรม บ้าน/กิจการ
	ตกลง ยก
_	

ภาพที่ 44 บทที่ 3 ทำการกลั่นกรองข้อมูล ประเภท เพื่อนำไปวิเคราะห์

3.1.3.3 แปลงรูปแบบของข้อมูล (Data Transformation) เป็นขั้นตอนการแปลงข้อมูลในรูปแบบตา ราฐานข้อมูลให้อยู่ในรูป item set เพื่อใช้สำหรับการนำมาวิเคราะห์ด้วยวิธีการของ data mining ผู้ วิเคราะห์ข้อมูลได้ดำเนินการกับข้อมูลการใช้ไฟฟ้า ดังนี้

 1) ผู้วิเคราะห์ข้อมูลทำการแปลงรูปแบบข้อมูลด้วยการรวมกลุ่มของข้อมูลในแอ ตทริบิวต์ ขนาดมิเตอร์ (Meter) ได้แก่ ขนาดมิเตอร์ 15(45)A) เนื่องจากแอตทริบิวต์ ขนาดมิเตอร์ 15(45) ซึ่งทางผู้วิเคราะห์ข้อมูลจะขอรวมกลุ่มของขนาดมิเตอร์ ดังกล่าว ให้เหลือเพียง "15(45)A" อย่างเดียว แปลงข้อมูลให้อยู่ในรูป item set โดย "15(45)A" แทนคำว่า "yes"

 2) ผู้วิเคราะห์ข้อมูลทำการแปลงรูปแบบข้อมูลด้วยการรวมกลุ่มของข้อมูลในแอ ตทริบิวต์ ขนาดมิเตอร์ (Meter) ขนาดมิเตอร์ 30(100)A แปลงข้อมูลให้อยู่ในรูป item set โดย "30(100)A" แทนคำว่า "no"

3.1.4 สร้างแบบจำลอง (Modeling) ขั้นตอนการสร้างตัวแบบทางคณิตศาสตร์ และสถิติ เพื่อการวิเคราะห์ข้อมูล โดยสามารถใช้เทคนิควิธีการต่าง ๆ อาทิ การจำแนก (Classification) การ แบ่งกลุ่ม (Clustering) และการสร้างความสัมพันธ์ (Association rule)

ผู้วิเคราะห์ข้อมูลวิเคราะห์ข้อมูลด้วยเทคนิคทางดาต้าไมน์นิ่ง แบบการจำแนกประเภท ข้อมูล (Classification) โดยการใช้โมเดลการตัดสินใจแบบต้นไม้ (Decision Tree) ซึ่งในขั้นตอนนี้จะ ถูกนำมาใช้เพื่อให้ได้คำตอบที่ดีที่สุด โดยใช้โปรแกรมที่ใช้ทำเหมืองข้อมูล ด้วยชุดข้อมูลที่คัดเลือก ดังนี้

	1	meter	type	level				
	2	NO	house	M				
	3	NO	small industry	M				
	4	NO	agriculture	M				
	5	NO	agriculture	M				
	6	NO	house	М				
	7	NO	house	M				
	8	NO	small industry	М				
	9	NO	small industry	Μ				
	10	NO	agriculture	М				
	11	NO	agriculture	M				
	12	NO	agriculture	М				
	13	NO	agriculture	M				
	14	NO	small industry	S				
	15	NO	small industry	S				
	16	NO	house	S				
	17	NO	agriculture	S				
	18	NO	house	S				
	19	NO	small industry	S				
1	20	NO	house	S				
1	21	NO	small industry	S				
1	22	NO	small industry	S				
1	23	NO	house	S				
1	24	NO	agriculture	S				
1	25	NO	small industry	S				
1	26	NO	agriculture	L				
1	27	NO	small industry	L				
1	28	NO	agriculture	XL				
1	29	NO	except	XL				
:	30	NO	small industry	XL				

ภาพที่ 45 บทที่ 3 ข้อมูลแอตทริบิวต์ที่คัดเลือกมาวิเคราะห์ข้อมูลทั้งหมด

จากรูปภาพที่ ประกอบด้วย 3 แอตทริบิวต์ คือ

- ประเภท (type) ประกอบด้วย 4 ค่า คือ เกษตรกรรม, บ้าน, ยกเว้นค่าไฟฟ้า, อุตสหกร รมขนาดเล็ก

– ขนาดมิเตอร์ (meter) ประกอบด้วย 2 ค่า คือ ได้แก่ ขนาดมิเตอร์ 30(100)A (no) , ขนาด
 มิเตอร์ 15(45)A) (yes)

-ประเภทการใช้ไฟฟ้า ประกอบด้วย S การใช้ไฟฟ้าตั้งแต่ 1-1000 M การใช้ไฟฟ้าตั้งแต่ 1000-2000 L ใช้ไฟฟ้าตั้งแต่ 2000-3000 XL ใช้ไฟฟ้าตั้งแต่ 4000ขึ้นไป การสร้างโมเดล Decision Tree จะทำการคัดเลือกแอตทริบิวต์ที่มีความสัมพันธ์กับคลาสมากที่สุด ขึ้นมาเป็นโหนดบนสุดของ Tree (root node) หลังจากนั้นก็จะหาแอตทริบิวต์ถัดไปเรื่อย ๆ ในการหา ความสัมพันธ์ของแอตทริบิวต์นี้จะใช้ตัววัด ที่เรียกว่า Information Gain (IG) ค่านี้คำนวณได้จาก สมการการคำนวณค่าแต่ละแอตทริบิวต์เทียบกับคลาสเพื่อหาแอตทริบิวต์ที่มีค่า IG มากที่สุด

IG (parent, child) = entropy(parent) = – [p(c1) × entropy(c1) + p(c2) × entropy(c2) + …] โดยที่ entropy(c1) = -p(c1) log p(c1) และ p(c2) คือ ค่าความน่าจะเป็นของ c1

การคำนวณค่าแต่ละแอตทริบิวต์เทียบกับคลาสเพื่อหาแอตทริบิวต์ที่มีค่า IG มากที่สุดมา เป็น Root ของ Decision tree กับจำนวนข้อมูลทั้งหมดโดยใช้ผลลัพธ์เป็น meter (ขนาดมิเตอร์) yes และ no ดังนี้

1) คำนวณค่า IG ของแอตทริบิวต์ year จากข้อมูลสามารถคำนวณค่า IG ได้ดังนี้

entropy (parent) $= - p(y) \times \log 2p(y) + p(n) \times \log 2p(n)$ $= - [0.6167 \times \log 2(0.6167) + 0.3833 \times \log 2(0.3833)]$ $= - [0.6167 \times -0.6974 + 0.3833 \times -1.3835]$ = - [-0.4321 + -0.5303] = 0.9623entropy (NA = 2564) $= - p(y) \times \log 2p(y) + p(n) \times \log 2p(n)$ $= - [0.5932 \times \log 2(0.5932) + 0.4068 \times \log 2(0.4068)]$ $= - [0.5932 \times -0.7534 + 0.4068 \times -1.2976]$ = - [-0.4469 + -0.5279] = 0.9748entropy (NA = 2565) $= - p(y) \times \log 2p(y) + p(n) \times \log 2p(n)$

 $= - [0.6529 \times \log 2(0.6529) + 0.3471 \times$ log2(0.3471)] $= -[0.6529 \times -0.6151 + 0.3471 \times -1.5266]$ = - [-0.4016 + -0.5299]= 0.9315IG (parent, child) = entropy(parent) – [p ($\aleph a = 2564$) * entropy ($\aleph a = 2564$) + p (ผล = 2565) * entropy (ผล = 2565)] = 0.9603 - [0.6221 * 0.9748 + 0.1196 * 0.9315] = 0.9603 - [0.6064 + 0.1114]= 0.9603 - 0.9571 = 0.00292) คำนวณค่า IG ของแอตทริบิวต์ province จากข้อมูลสามารถคำนวณค่า IG ได้ดังนี้ entropy (parent) $= -p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$ $= - [0.6167 \times \log 2(0.6167) + 0.3833 \times$ log2(0.3833)] = - [0.6167 × -0.6974 + 0.3833 × -1.3835] = - [-0.4321 + -0.5303]= 0.9623 entropy (ผล = Chiang Mai) $= -p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$ $= - [0.5932 \times \log 2(0.5932) + 0.4068 \times$ log2(0.4068)] $= -[0.5932 \times -0.7534 + 0.4068 \times -1.2976]$ = - [-0.4469 + -0.5279]= 0.9748 entropy (ผล = Nan) $= -p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$

$$= - [0.5932 \times \log 2(0.5932) + 0.4068 \times \log 2(0.4068)]$$

$$= - [0.5932 \times -0.7534 + 0.4068 \times -1.2976]$$

$$= - [-0.4469 + -0.5279]$$

$$= 0.9748$$
entropy (Wa = small industry) = - p(y) \times \log p(y) + p(n) \times \log p(n)
$$= - [0.6529 \times \log 2(0.6529) + 0.3471 \times \log 2(0.3471)]$$

$$= - [0.6529 \times -0.6151 + 0.3471 \times -1.5266]$$

$$= - [-0.4016 + -0.5299]$$

$$= 0.9315$$
entropy (Wa = agriculture) = - p(y) \times \log p(y) + p(n) \times \log p(n)
$$= - [0.6434 \times \log 2(0.6434) + 0.3566 \times \log 2(0.3566)]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times \log 2(0.6434) + 0.3566 \times \log 2(0.3566)]$$

$$= - [0.6434 \times \log 2(0.6434) + 0.3566 \times \log 2(0.3566)]$$

$$= - [0.6434 \times \log 2(0.6434) + 0.3566 \times \log 2(0.3566)]$$

$$= - [0.6434 \times \log 2(0.6434) + 0.3566 \times \log 2(0.3566)]$$

$$= - [0.6434 \times \log 2(0.6434) + 0.3566 \times \log 2(0.3566)]$$

$$= - [0.6434 \times \log 2(0.6434) + 0.3566 \times \log 2(0.3566)]$$

$$= - [0.6434 \times \log 2(0.6434) + 0.3566 \times \log 2(0.3566)]$$

$$= - [0.6434 \times \log 2(0.6434) + 0.3566 \times \log 2(0.3566)]$$

$$= - [0.6434 \times \log 2(0.6434) + 0.3566 \times \log 2(0.3566)]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.9398$$
IG (parent, child) = entropy(parent) - [p (Wa = house) * entro

= agriculture) + p ($\aleph a$ = except) * entropy ($\aleph a$ = except)]

= 0.9603 - [0.6221 * 0.9748 + 0.1196 * 0.9315 + 0.1213 * 0.9398 + 0.1667 * = 0.9603 - [0.6064 + 0.1114 +0.1114 + 0.1469] = 0.9603 - 0.9571

จากการคำนวณค่า IG ของทุกแอตทริบิวต์พบว่าค่า IG ของแอตทริบิวต์ type มีค่ามากที่สุด (0.1172) ดังนั้นจึงเลือกแอตทริบิวต์ type ขึ้นมาเป็นโหนด root และจะต้องทำการแตกกิ่งจากโหนด root ออกไปจนข้อมูลในแต่ละโหนดมีคลาสคำตอบเดียวกัน และผู้วิเคราะห์ข้อมูลพบว่าการคำนวณ แอตทริบิวต์ type (house) และ type (small industry) ไม่สามารถสร้างกิ่งแต่ละโหนดต่อไปได้

= 0.1172

0.8810]

เนื่องจากไม่มีความสัมพันธ์กับแอตทริบิวต์ใด จึงสรุปข้อมูลได้เป็นผลลัพธ์ ขนาดมิเตอร์ที่ได้รับ มาตรฐาน กับ มิเตอร์ขนาดเล็ก ดังนั้นผู้วิเคราะห์ข้อมูลจึงสร้างโหนดในระดับถัดไปของแอตทริบิวต์ type agriculture และ except

การคำนวณค่าแต่ละแอตทริบิวต์ในระดับที่ 2 ต่อจากโหนด root เพื่อหาค่า IG ที่มากที่สุด ของแอตทริบิวต์ type กับจำนวนข้อมูลทั้งหมดโดยใช้ผลลัพธ์เป็นขนาดมิเตอร์ที่ได้รับมาตรฐาน และ มิเตอร์ขนาดเล็ก ดังนี้

1) คำนวณค่า IG ของแอตทริบิวต์ Type และแอตทริบิวต์ province ของ agriculture จากข้อมูล สามารถคำนวณค่า IG ได้ดังนี้

entropy (parent)	$= - p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$
	= - [0.3333 × log2(0.3333) + 0.6667 ×
	log2(0.6667)]
	= - [0.3333 × -1.5851 + 0.6667 × -0.5849]
	= - [-0.5283 + -0.3899]
	= 0.9183
entropy (ผล = Chiang Mai)	$= - p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$

118

$$= - [0.5932 \times \log 2(0.5932) + 0.4068 \times \log 2(0.4068)]$$

$$= - [0.5932 \times -0.7534 + 0.4068 \times -1.2976]$$

$$= - [-0.4469 + -0.5279]$$

$$= 0.9748$$
entropy (AIR = Nan) = - p(y) \times \log 2p(y) + p(n) \times \log 2p(n)
$$= - [0.6529 \times \log 2(0.6529) + 0.3471 \times \log 2(0.3471)]$$

$$= - [0.6529 \times -0.6151 + 0.3471 \times -1.5266]$$

$$= - [-0.4016 + -0.5299]$$

$$= 0.9315$$
entropy (AIR = Phrae) = - p(y) \times \log 2p(y) + p(n) \times \log 2p(n)
$$= - [0.6434 \times \log 2(0.6434) + 0.3566 \times \log 2(0.3566)]$$

$$= - [-0.4093 + -0.5305]$$

$$= 0.9398$$
IG (parent, child) = entropy(erront) In (AIR = Ching Mai) * entropy (AIR = 2000)

IG (parent, child) = entropy(parent) – [p (ผล = Chiang Mai) * entropy (ผล =

1.2) คำนวณค่า IG ของแอตทริบิวต์ Type และแอตทริบิวต์ province ของ small industry จากข้อมูล สามารถคำนวณค่า IG ได้ดังนี้

entropy (parent)

$$= - p(y) \times logap(y) + p(n) \times logap(n)$$

$$= - [0.3333 \times log2(0.3333) + 0.6667 \times log2(0.6667)]$$

$$= - [0.5283 + -0.3899]$$

$$= 0.9183$$
entropy (MR = Chiang Mai)

$$= - p(y) \times logap(y) + p(n) \times logap(n)$$

$$= - [0.5932 \times log2(0.5932) + 0.4068 \times log2(0.4068)]$$

$$= - [0.5932 \times -0.7534 + 0.4068 \times -1.2976]$$

$$= - [-0.4469 + -0.5279]$$

$$= 0.9748$$
entropy (MR = Nan)

$$= - p(y) \times logap(y) + p(n) \times logap(n)$$

$$= - [0.6529 \times log2(0.6529) + 0.3471 \times log2(0.3471)]$$

$$= - [0.6529 \times -0.6151 + 0.3471 \times -1.5266]$$

$$= - [-0.4016 + -0.5299]$$

$$= 0.9315$$
entropy (MR = Phrae)

$$= - p(y) \times logap(y) + p(n) \times logap(n)$$

$$= - [0.6434 \times log2(0.6434) + 0.3566 \times log2(0.3566)]$$

$$= - [0.6434 \times -0.6362 + 0.3566 \times -1.4876]$$

$$= - [0.4093 + -0.5305]$$

$$= 0.9398$$
IG (parent, child) = entropy(parent) - [p (MR = Chiang Mai) * entropy (MR = Phrae)]

1.3) คำนวณค่า IG ของแอตทริบิวต์ Type และแอตทริบิวต์ province ของ house จากข้อมูล สามารถคำนวณค่า IG ได้ดังนี้

entropy (parent)	$= - p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$
	= - [0.3333 × log2(0.3333) + 0.6667 ×
	log2(0.6667)]
	= - [0.3333 × -1.5851 + 0.6667 × -0.5849]
	= - [-0.5283 + -0.3899]
	= 0.9183
entropy (ผล = Chiang Mai)	$= - p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$
	= $-[0.5932 \times \log 2(0.5932) + 0.4068 \times$
	log2(0.4068)]
	= - [0.5932 × -0.7534 + 0.4068 × -1.2976]
	= - [-0.4469 + -0.5279]
	= 0.9748
entropy (ผล = Nan)	$= - p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$
	= - $[0.6529 \times \log 2(0.6529) + 0.3471 \times$
	log2(0.3471)]
	= - [0.6529 × -0.6151 + 0.3471 × -1.5266]
	= - [-0.4016 + -0.5299]
	= 0.9315
entropy (ผର = Phrae)	$= - p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$

```
= - [0.6434 × log2(0.6434) + 0.3566 ×
log2(0.3566)]
= - [0.6434 × -0.6362 + 0.3566 × -1.4876]
= - [-0.4093 + -0.5305]
= 0.9398
```

IG (parent, child) = entropy(parent) - [p (ผล = Chiang Mai) * entropy (ผล =

Chiang Mai) + p ($\aleph a$ = Nan) * entropy ($\aleph a$ = Nan) + p ($\aleph a$ = Phrae) * entropy ($\aleph a$ = Phrae)]

1.4) คำนวณค่า IG ของแอตทริบิวต์ Type และแอตทริบิวต์ province ของ except จากข้อมูล สามารถคำนวณค่า IG ได้ดังนี้

entropy (parent)

$$= - p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$$

$$= - [0.3333 \times \log_2 (0.3333) + 0.6667 \times \log_2 (0.6667)]$$

$$= - [0.3333 \times -1.5851 + 0.6667 \times -0.5849]$$

$$= - [-0.5283 + -0.3899]$$

$$= 0.9183$$
entropy (Ma = Chiang Mai)

$$= - p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$$

$$= - [0.5932 \times \log_2 (0.5932) + 0.4068 \times \log_2 (0.4068)]$$

$$= - [0.5932 \times -0.7534 + 0.4068 \times -1.2976]$$

$$= - [-0.4469 + -0.5279]$$

$$= 0.9748$$

entropy (
$$\aleph \Re = Nan$$
)
= - p(y) × log2p(y) + p(n) × log2p(n)
= - [0.6529 × log2(0.6529) + 0.3471 ×
log2(0.3471)]
= - [0.6529 × -0.6151 + 0.3471 × -1.5266]
= - [-0.4016 + -0.5299]
= 0.9315
entropy ($\aleph \Re = Phrae$)
= - p(y) × log2p(y) + p(n) × log2p(n)
= - [0.6434 × log2(0.6434) + 0.3566 ×
log2(0.3566)]
= - [0.6434 × -0.6362 + 0.3566 × -1.4876]
= - [-0.4093 + -0.5305]
= 0.9398
IG (parent, child) = entropy(parent) - [p ($\aleph \Re = Chiang Mai$) * entropy ($\aleph \Re = Phrae$)]
= 0.9603 - [0.6221 * 0.9748 + 0.1196 *
0.9315 + 0.1213 * 0.9398]

= 0.9603 – [0.6064 + 0.1114 + 0.1114] = 0.9603 – 0.9571 = 0.0029 2) คำนวณค่า IG ของแอตทริบิวต์ Type และแอตทริบิวต์ year ของ agriculture จากข้อมูลสามารถ

2) คำนวณคา IG ของแอตทริบิวต Type และแอตทริบิวต year ของ agriculture จากขอมูลสามารถ คำนวณค่า IG ได้ดังนี้

entropy (parent)	$= - p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$
	$= - [0.3333 \times \log 2(0.3333) + 0.6667 \times$
	log2(0.6667)]
	= - [0.3333 × -1.5851 + 0.6667 × -0.5849]
	= - [-0.5283 + -0.3899]

= 0.9183 entropy ($\aleph a = 2564$) = - p(y) × log₂p(y) + p(n) × log₂p(n) $= - [0.5932 \times \log 2(0.5932) + 0.4068 \times$ log2(0.4068)] $= -[0.5932 \times -0.7534 + 0.4068 \times -1.2976]$ = - [-0.4469 + -0.5279]= 0.9748 entropy ($\aleph \Re = 2565$) = - p(y) × log₂p(y) + p(n) × log₂p(n) $= - [0.6529 \times \log 2(0.6529) + 0.3471 \times$ log2(0.3471)] = - [0.6529 × -0.6151 + 0.3471 × -1.5266] = - [-0.4016 + -0.5299]= 0.9315IG (parent, child) = entropy(parent) – [p ($\aleph a = 2564$) * entropy ($\aleph a = 2564$) + p (ผล = 2565) * entropy (ผล = 2565)] = 0.9603 - [0.6221 * 0.9748 + 0.1196 * 0.9315] = 0.9603 - [0.6064 + 0.1114] = 0.9603 - 0.9571 = 0.0029 2.1) คำนวณค่า IG ของแอตทริบิวต์ Type และแอตทริบิวต์ year ของ small industry จากข้อมูล สามารถคำนวณค่า IG ได้ดังนี้

entropy (parent)	$= - p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$
	= - [0.3333 × log2(0.3333) + 0.6667 ×
	log2(0.6667)]
	= - [0.3333 × -1.5851 + 0.6667 × -0.5849]
	= - [-0.5283 + -0.3899]

= 0.9183 entropy ($\aleph a = 2564$) = - p(y) × log₂p(y) + p(n) × log₂p(n) $= - [0.5932 \times \log 2(0.5932) + 0.4068 \times$ log2(0.4068)] $= -[0.5932 \times -0.7534 + 0.4068 \times -1.2976]$ = - [-0.4469 + -0.5279]= 0.9748 entropy ($\aleph \Re = 2565$) = - p(y) × log₂p(y) + p(n) × log₂p(n) $= - [0.6529 \times \log 2(0.6529) + 0.3471 \times$ log2(0.3471)] = - [0.6529 × -0.6151 + 0.3471 × -1.5266] = - [-0.4016 + -0.5299]= 0.9315IG (parent, child) = entropy(parent) – [p ($\aleph a = 2564$) * entropy ($\aleph a = 2564$) + p (ผล = 2565) * entropy (ผล = 2565)] = 0.9603 - [0.6221 * 0.9748 + 0.1196 * = 0.9603 - [0.6064 + 0.1114]= 0.9603 - 0.9571 = 0.0029

2.2) คำนวณค่า IG ของแอตทริบิวต์ Type และแอตทริบิวต์ year ของ house จากข้อมูลสามารถ คำนวณค่า IG ได้ดังนี้

0.9315]

entropy (parent)	$= - p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$
	= - [0.3333 × log2(0.3333) + 0.6667 ×
	log2(0.6667)]
	= - [0.3333 × -1.5851 + 0.6667 × -0.5849]

= - [-0.5283 + -0.3899]= 0.9183 entropy ($\aleph a = 2564$) = - p(y) × log₂p(y) + p(n) × log₂p(n) $= - [0.5932 \times \log 2(0.5932) + 0.4068 \times$ log2(0.4068)] = - [0.5932 × -0.7534 + 0.4068 × -1.2976] = - [-0.4469 + -0.5279] = 0.9748 entropy ($\aleph a = 2565$) = - p(y) × log2p(y) + p(n) × log2p(n) $= - [0.6529 \times \log 2(0.6529) + 0.3471 \times$ log2(0.3471)] $= -[0.6529 \times -0.6151 + 0.3471 \times -1.5266]$ = - [-0.4016 + -0.5299]= 0.9315IG (parent, child) = entropy(parent) – [p ($\aleph a = 2564$) * entropy ($\aleph a = 2564$) + p (ผล = 2565) * entropy (ผล = 2565)] = 0.9603 - [0.6221 * 0.9748 + 0.1196 * = 0.9603 - [0.6064 + 0.1114] = 0.9603 - 0.9571 = 0.0029

2.3) คำนวณค่า IG ของแอตทริบิวต์ Type และแอตทริบิวต์ year ของ except จากข้อมูลสามารถ คำนวณค่า IG ได้ดังนี้

0.9315]

entropy (parent)	$= -p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$
	= - [0.3333 × log2(0.3333) + 0.6667 ×
	log2(0.6667)]

$$= - [0.3333 \times -1.5851 + 0.6667 \times -0.5849]$$

$$= - [-0.5283 + -0.3899]$$

$$= 0.9183$$
entropy (Wa = 2564) = - p(y) \times log2p(y) + p(n) \times log2p(n)
$$= - [0.5932 \times log2(0.5932) + 0.4068 \times log2(0.4068)]$$

$$= - [0.5932 \times -0.7534 + 0.4068 \times -1.2976]$$

$$= - [-0.4469 + -0.5279]$$

$$= 0.9748$$
entropy (Wa = 2565) = - p(y) \times log2p(y) + p(n) \times log2p(n)
$$= - [0.6529 \times log2(0.6529) + 0.3471 \times log2(0.3471)]$$

$$= - [0.6529 \times -0.6151 + 0.3471 \times -1.5266]$$

$$= - [-0.4016 + -0.5299]$$

$$= 0.9315$$
IG (parent, child) = entropy(parent) - [p (Wa = 2564) * entropy (Wa = 2564) + 0.5264]

it, child) = entr arent) – (p obath opy p (ผล = 2565) * entropy (ผล = 2565)] = 0.9603 - [0.6221 * 0.9748 + 0.1196 *

0.9315]

= 0.9603 - [0.6064 + 0.1114]= 0.9603 - 0.9571 = 0.0029

จากการคำนวณค่า IG ของแอตทริบิวต์ Type ต่อแอตทริบิวต์ province และแอทริบิวต์ year พบว่าค่า IG ของแอตทริบิวต์ Type (agriculture) ต่อแอตทริบิวต์ province มีค่ามากที่สุด (0.2516) และแอตทริบิวต์ Type (except) ต่อแอตทริบิวต์ year มีค่ามากรองลงมาเป็น (0.2040) ดังนั้นจึงเลือกแอตทริบิวต์ province และแอตทริบิวต์ year ขึ้นมาเป็นโหนดในระดับที่ 2 ต่อจาก

โหนด Root และผู้วิเคราะห์ข้อมูลพบว่าการคำนวณแอตทริบิวต์ Type (house, small industry) ไม่ สามารถสร้างกิ่งแต่ละโหนดต่อไปได้ เนื่องจากไม่มีความสัมพันธ์กับแอตทริบิวต์ใด จึงสรุปข้อมูลได้ เป็นผลลัพธ์ขนาดมิเตอร์ที่ได้รับมาตรฐาน และ มิเตอร์ขนาดเล็ก ดังนั้นผู้วิเคราะห์ข้อมูลจึงทำการ แตกกิ่งจากโหนดในระดับที่ 2 ของแอตทริบิวต์ province, year ออกไปจนข้อมูลในแต่ละโหนดมี คลาสคำตอบเดียวกัน

การคำนวณค่าแต่ละแอตทริบิวต์ในระดับที่ 3 กับจำนวนข้อมูลทั้งหมดโดยใช้ผลลัพธ์เป็น ขนาดมิเตอร์ที่ได้รับมาตรฐาน และ มิเตอร์ขนาดเล็ก ดังนี้

1)คำนวณค่า IG ของแอตทริบิวต์ Type (agriculture) และแอตทริบิวต์ province (Chiang Mai) ไปแอตทริบิวต์ year (2564, 2565) จากข้อมูลสามารถคำนวณค่า IG ได้ดังนี้

entropy (parent)	$= - p(y) \times log_{2}p(y) + p(n) \times log_{2}p(n)$
	= - [0.5000 × log2(0.5000) + 0.5000 ×
	log2(0.5000)]
	= - [0.5000 × -1 + 0.5000 × -1]
	= - [-0.5000 + -0.5000]
	= 1
entropy (ผล = 2564)	$= - p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$
	= - [0.5932 × log2(0.5932) + 0.4068 ×
	log2(0.4068)]
	= - [0.5932 × -0.7534 + 0.4068 × -1.2976]
	= - [-0.4469 + -0.5279]
	= 1
entropy (ผล = 2565)	$= - p(y) \times \log_2 p(y) + p(n) \times \log_2 p(n)$
	= - [0.6529 × log2(0.6529) + 0.3471 ×
	log2(0.3471)]
	= - [0.6529 × -0.6151 + 0.3471 × -1.5266]
	= - [-0.4016 + -0.5299]

IG (parent, child) = entropy(parent) – [p ($\aleph a = 2564$) * entropy ($\aleph a = 2564$) +

= 0

p ($\aleph a = 2565$) * entropy ($\aleph a = 2565$)] = 1 - [1 * 1 + 0 * 0] = 1 - [1 + 0] = 1 - 1 = 0

จากการคำนวณค่า IG ของแอตทริบิวต์ Type (agriculture) ต่อแอตทริบิวต์ province ไปแอ ตทริบิวต์ year พบว่าค่า IG ของแอตทริบิวต์ Type ต่อแอตทริบิวต์ province ไปแอตทริบิวต์ year มี ค่ามากที่สุด (0.0796) ดังนั้นจึงเลือกแอตทริบิวต์ year ขึ้นมาเป็นโหนดในระดับที่ 3 ต่อจากโหนด Root ต่อจากโหนดระดับที่ 2 และผู้วิเคราะห์ข้อมูลพบว่าการคำนวณแอตทริบิวต์ year (2564, 2565) ไม่สามารถสร้างกิ่งแต่ละโหนดต่อไปได้ เนื่องจากไม่มีความสัมพันธ์กับแอตทริบิวต์ for จึง สรุปข้อมูลได้เป็นผลลัพธ์ ขนาดมิเตอร์ที่ได้รับมาตรฐาน และ มิเตอร์ขนาดเล็ก และแอตทริบิวต์ Type (except) ต่อแอตทริบิวต์ year เป็นแอตทริบิวต์สุดท้าย พบว่าแอตทริบิวต์ province มี ความสัมพันธ์กับแอตทริบิวต์ year มากที่สุด ซึ่งพบว่าข้อมูลในแต่ละโหนดมีคลาสคำตอบเดียวกัน แล้ว คือ ขนาดมิเตอร์ที่ได้รับมาตรฐาน และ มิเตอร์ขนาดเล็ก ตามภาพที่ 44

ภาพที่ 46 บทที่ 3 เส[้]นแสดงความสัมพันธ์

จากภาพที่ 45 โมเดลต้นไม้ตัดสินใจ จากการคำนวณด้วยมือนี้ ผู้วิเคราะห์ข้อมูลได้ผลลัพธ์ ว่า โมเดลต้นไม้ตัดสินใจ Root node ที่คือ แอตทริบิวต์ Type และได้ interior node คือ แอตทริบิวต์ province และ leaf node คือ แอตทริบิวต์ year ซึ่งไม่สามารถสร้างกิ่งแต่ละโหนดต่อไปได้ เนื่องจากไม่มีความสัมพันธ์กับแอตทริบิวต์ใด ก็จะได้ผลลัพธ์ที่ แอตทริบิวต์ year 2564 เป็นขนาด มิเตอร์ที่ได้รับมาตรฐาน year 2565 เป็น มิเตอร์ขนาดเล็ก แอตทริบิวต์ province house เป็นขนาด มิเตอร์ที่ได้รับมาตรฐาน และ แอตทริบิวต์ province small industry เป็นมิเตอร์ขนาดเล็ก

3.1.5 การประเมินผล (Evaluation) เป็นขั้นตอนก่อนนำผลลัพธ์ที่ได้จากขั้นตอนที่ 3.1.4 ไป ใช้งาน ด้วยการวัดประสิทธิผลของผลลัพธ์ที่ได้กับวัตถุประสงค์ที่ตั้งไว้ในขั้นตอนแรก ว่ามีนัยสำคัญ หรือความน่าเชื่อถือมากน้อยเพียงใด ด้วยการประเมินผลจากโปรแกรมว่าถูกต้องหรือไม่

ผู้วิเคราะห์ข้อมูลได้ทำการทดสอบโมเดล เพื่อวัดประสิทธิภาพที่ตรงกับความต้องการ ซึ่ง การวัดประสิทธิภาพด้วยวิธี Self-Consistency Test เหมาะสำหรับใช้ในการทดสอบประสิทธิภาพ เพื่อดูแนวโน้มของโมเดลที่สร้างขึ้น และเมื่อนำข้อมูลมาทดสอบ (Testing data) กับโปรแกรมที่ผู้ วิเคราะห์เลือกมาทดสอบกับข้อมูลที่ผ่านการวิเคราะห์ข้อมูลด้วยเทคนิค Data Mining จากการ สร้างโมเดล Decision Tree จึงนำข้อมูลดังกล่าว มาทดสอบกับโปรแกรม Weka 3.8.5 ซึ่งมีขั้นตอน การทำงาน ดังนี้

ขั้นตอนที่ 1 เปิดโปรแกรม Weka 3.8.5 ขึ้นมา

ภาพที่ 47 บทที่ 3 แสดงการเปิดโปรแกรม weka 3.8.5

ภาพที่ 48 บทที่ 3 แสดงการเข้าหน้าจอโปรแกรม Weka 3.8.5

ขั้นตอนที่ 2 นำเข้าข้อมูลที่ได้จัดเตรียมไว้ โดยเลือกที่ Application>>Explorer>>Open file เลือกไฟล์ข้อมูลที่ต้องการนำมาทดสอบตามภาพที่ 3.11 และหลังจากนั้นโปรแกรมแสดงหน้าจอ ข้อมูล ตามภาพที่ 3.12

Weka Explorer										- 🗆 ×
Preprocess Class	sify Cluster As	sociate Sele	ct attributes Visua	lize						
Open file	Open U	IRL	Open DB	Ger	nerate		Undo	Edit		Save
Filter	🕝 Open								×	
Choose None	Look In: 🗎 d	Jdd				•			ő	Apply Stop
Current relation	DB							Invoke options dial	oa	
Relation: None Instances: None	decision tr	ee								a: None a: None
Attributes	i visio									
All	weka_data	CSV								
										Visualize Al
									_ [
								₽ = ↑ ₽ ₽	•	
	File <u>N</u> ame:	weka_data.csv								
	Files of <u>Type</u> :	CSV data files	(*.CSV)						•	
								Open Cano	el	
	-				_					
		Remove								
Status										
Welcome to the We	ka Explorer									Log X

ภาพที่ 49 บทที่ 3 แสดงการนำเข้าข้อมูลเข้าในโปรแกรม Weka 3.8.5

Preproces	S Classify Cluster A	ssociate Select attributes Visualize							
	Open file	Open URL	Open DB	Gen	erate		Undo	Edit	Save
Filter									
Choose	None								Apply Stop
Current rela	ation				Selected at	tribute			
Relation	: data_1.1 :: 1364			Attributes: 3 Sum of weights: 1364	Name: Missing:	meter 0 (0%)	Distinct: 2	Type: Nominal Unique: 0 (0%)	
Attributes					No.	Label	Count	Weight	
	Al	None	Invert	Pattern	1	NO yes	687 677	687.0 677.0	
No. 1 2 3	Name meter type level								
Status		Retrove			607	(1001)		57	
ок									Log 🛷 x0

ภาพที่ 50 บทที่ 3 แสดงข้อมูลที่เข้าในโปรแกรม Weka 3.8.5

ขั้นตอนที่ 3 ดำเนินการเลือกเทคนิคการจัดกลุ่มข้อมูลแบบ Decision Tree โดยเลือกที่ Classification>>Choose>>tree และเลือกรูปแบบเป็น J48 ตามภาพที่ 3.14 จากนั้นเลือกตัวบ่งชี้ใน ที่นี้ใช้เป็นขนาดมิเตอร์ (meter) ส่วนที่ใช้ในโปรแกรม ใช่ชื่อว่า (meter) จากนั้นกดปุ่ม Start ตาม ภาพที่ 3.15 จะแสดงผลลัพธ์ที่ได้ตามภาพที่ 3.16

ภาพที่ 51 บทที่ 3 แสดงการเลือกเทคนิคการจัดกลุ่มข้อมูลแบบ Decision Tree รูปแบบเป็น J48

Weka Explorer		-	×
Preprocess Classify Cluster Associate	Select attributes Visualize		
Classifier			 _
Choose J48-C 0.25-M 2			
Test options	Classifier output		
Use training set Subject test set Cross-validation Parcentage split More options			
(Non) result			
คลกทบุ่ม			

้ ภาพที่ 52 บทที่ 3 แสดงการเลือกตัวบ่งชี้เป็น meter แล้ว คลิกที่ start

ภาพที่ 53 บทที่ 3 แสดงหน้าจอผลลัพธ์ของโมเดลการจัดกลุ่มข้อมูลแบบ Decision Tree : J48

จากผลลัพธ์การทดลองพบว่าเทคนิค Decision Tree : J48 ให้ผลลัพธ์การจำแนกประเภท ขนาดมิเตอร์ที่ได้รับมาตรฐาน (yes) และ มิเตอร์ขนาดเล็ก (no) มีความถูกต้องถึง 58.06% แสดง ผลลัพธ์แผนภาพโมเดลต้นไม้ตัดสินใจที่มีกิ่งแตกออกมา ดังภาพที่ 3.17

ภาพที่ 54 บทที่ 3 แสดงผลลัพธ์แผนภาพโมเดลต^{ุ้}นไม้ตัดสินใจ ในโปรแกรม Weka 3.8.5

=== Run infor	mation ===
Scheme:	weka.classifiers.trees.J48 -C 0.25 -M 2
Relation:	data_1.1
Instances:	1364
Attributes:	3
	meter
	type
	level
Test mode:	split 70.0% train, remainder test
=== Classifie	r model (full training set) ===
J48 pruned tr	ee
<pre>level = M type = ho type = sm type = ag type = ex level = S: NO level = L: ye level = XL</pre>	use: NO (55.0/18.0) all industry: yes (43.0/18.0) riculture: NO (51.0/25.0) cept: yes (67.0/32.0) (859.0/384.0) a (98.0/5.0)
type = ho	use: yes (55.0/26.0)
type = sm	all industry: NO (37.0/13.0)
type = ag	riculture: yes (62.0/26.0)
type = ex	cept: yes (37.0/18.0)
Number of Lea	ves : 10
Size of the t	ree : 13

จากผลลัพธ์การสร้างโมเดลด้วยเทคนิค Decision Tree: J48 ในโปรแกรม Weka 3.8.5 ได้ สร้างกฎจากการจำแนกกลุ่มต้นไม้การตัดสินใจแบบ Decision Tree มีกิ่งแตกออกมา ดังภาพที่ 3.20

ภาพที่ 55 บทที่ 3 แสดงผลลัพธ์กฎต้นไม้การตัดสินใจ ของโปรแกรม Weka 3.8.5

ดังนั้นผู้วิเคราะห์ข้อมูลจะใช้เทคนิคของการจำแนกกลุ่มแบบ Decision Tree: J48 มาใช้ในการศึกษา เนื่องจากให้ผลลัพธ์ของกฎที่สามารถทำนายได้จำนวน 8 กฎ ซึ่งสามารถนำไปใช้ในการแบ่งกลุ่มได้ ตามเงื่อนไขได้ชัดเจน และสามารถนำกฎที่ได้ไปวิเคราะห์กฎต่อไปได้ โดยสามารถจำแนกกฎได้ ดังนี้

กฎข้อที่ 1 IF level M = type = house THEN meter NO การใช้ไฟฟ้าในระดับปานกลาง ประเภทบ้านใช้มิเตอร์ไฟฟ้า 30(100)

กฏข้อที่ 2 IF level M = type = small industey THEN meter yes การใช้ไฟฟ้าในระดับปาน กลางในประเภทธุรกิจขนาดเล็กใช้มิเตอร์ไฟฟ้า 15(45)

กฎข้อที่ 3 IF level M = type = agriculture THEN meter NO การใช้ไฟฟ้าระดับปานกลาง ในประเภทเกษตรกรรมใช้มิเตอร์ไฟฟ้า 30(100)

กฏข้อที่ 4 IF level M = type = except THEN meter yes การใช้ไฟฟ้าระดับปานกลางใน ประเภทยกเว้นค่าไฟฟ้าใช้มิเตอร์ไฟฟ้า 15(45) กฏข้อที่ 5 IF level S THEN meter NO แสดงถึงการใช้ไฟฟ้าน้อยแต่มิเตอร์ไฟฟ้ามีขนาด 30(100) การใช้ไฟฟ้าในปีนี้อาจจะน้อย

กฎข้อที่ 6 IF level L THEN meter yes การใช้ไฟฟ้าระดับสูงมีการใช้มิเตอร์ขนาด 15(45) กฎข้อที่ 7 IF level XL = type= house THEN meter NO การใช้ไฟฟ้าระดับปานกลางใน จังหวัดน่านประเภทยกเว้นค่าไฟฟ้า มิเตอร์ไฟฟ้าไม่เหมาะสม

กฎข้อที่ 8 IF level XL = type = small industey THEN meter NO การใช้ไฟฟ้าระดับสูง พิเศษประเภทธุรกิจขนาดเล็กใช้มิเตอร์ไฟฟ้า 30(100)

กฎข้อที่ 9 IF level XL = type = agriculture THEN meter yes การใช้ไฟฟ้าระดับสูงพิเศษ ในประเภทเกษตรกรรมใช้มิเตอร์ไฟฟ้า 15(45)

กฎข้อที่ 10 IF level XL = type = except THEN meter yes การใช้ไฟฟ้าระดับสูงพิเศษใน ประเภทยกเว้นค่าไฟฟ้าใช้มิเตอร์ไฟฟ้า 15(45)

หลังจากผู้วิเคราะห์ข้อมูลเลือกการทดสอบประสิทธิภาพของ Model ด้วยวิธี Self-Consistency Test หรือเรียกว่า Use Training Set เป็นวิธีการที่นำข้อมูลที่ใช้ในการสร้างโมเดล (model) และข้อมูลที่ใช้ในการทดสอบโมเดลเป็นข้อมูลชุดเดียวกัน คือข้อมูลการโจมตีที่เกิดขั้นบน เว็บไซต์ ในปี 2019 ถึง ปี 2021 ที่ได้ทำการคัดเลือกมาทั้งหมด ซึ่งผู้วิเคราะห์ข้อมูลเลือกโปรแกรม ที่ใช้นำเสนอ คือ โปรแกรม Weka 3.8.5 พบว่าการทดสอบประสิทธิภาพโมเดล Decision Tree (J48) พิจารณาได้ว่า โมเดลที่ถูกสร้างขึ้น มีค่าความถูกต้องเฉลี่ยในทุกโมเดลเท่ากับ 48.17% มีค่า การทำนายข้อมูลไม่ถูกต้องเท่ากับ 51.83% และมีค่าความคลาดเคลื่อนเท่ากับ 0.502 และเมื่อ พิจารณาส่วนค่า Confusion Matrix ในภาพที่ 3.22 พบว่าการหาค่าของข้อมูลค่าจริง กับจำนวน ข้อมูลจากการทำนาย แบ่งตามประเภทของขนาดของมิเตอร์ ขนาดมิเตอร์ที่ได้รับมาตรฐาน (yes) และ มิเตอร์ขนาดเล็ก (no) และนำมาหาค่าเฉลี่ยรวมของทุก class ได้ค่าเฉลี่ยรวมเท่ากับ 0.48 มี ผลลัพธ์ตรงกันอยู่ในระดับค่อนข้างดี สามารถนำโมเดลไปใช้งานได้

Size of the tree	e: 3	5							
Time taken to bu	uild model	: 0.01 se	conds						
=== Evaluation of	on trainin	g set ===							
Time taken to te	est model	on traini	ng data: 0.	01 second	ls				
=== Summary ===									
Correctly Classi	fied Inst	ances	842		61 7302	•			
Incorrectly Clas	sified In	stances	522		38.2698	*			
Kappa statistic			0.23	14					
Mean absolute er	ror		0.44	93					
Root mean square	ed error		0.47	4					
Relative absolut	e error		89.87	36 %					
Root relative so	quared err	or	94.80	17 %					
Total Number of	Instances		1364						
=== Detailed Acc	uracy By	Class ===							
	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.895	0.665	0.577	0.895	0.702	0.279	0.639	0.596	NO
	0.335	0.105	0.759	0.335	0.465	0.279	0.639	0.670	yes
Weighted Avg.	0.617	0.387	0.668	0.617	0.584	0.279	0.639	0.633	
=== Confusion Ma	atrix ===								
a b < c	lassified	as							
615 72 a =	NO								
450 227 b =	yes								
	-								

ภาพที่ 1 แสดงผลลัพธ์จากการจำแนกกลุ่มแบบ Decision Tree : J48 ในโปรแกรม Weka 3.8.5

3.1.6 เผยแพร่ผลวิเคราะห์ (Deployment) ขั้นตอนการนำผลลัพธ์ที่ได้ไปใช้งานเป็นการทั่วไป อาจ จัดทำเป็นรูปแบบของรายงาน (Report) หรือแผนภาพ (Dashboard) ที่พร้อมให้ฝ่ายต่าง ๆ นำไปใช้ ประโยชน์ในการวางแผน กำหนดกลยุทธ์ และดำเนินการต่าง ๆ ในทางธุรกิจ

ผู้วิเคราะห์ข้อมูลนำผลข้อมูลที่ทำการวิเคราะห์มาแสดงผลข้อมูลบนหน้าเว็บไซต์ ร่วมกับการ นำเสนอข้อมูลแบบ visualization ด้วยการแสดงผลข้อมูลในรูปแบบของภาพโดยใช้โปรแกรม

ขั้นตอนที่ 1 คลิกเบิดโปรแกรม Weka

ภาพที่ 2 บทที่ 3 แสดงการเข้าหน้าจอโปรแกรม Weka 3.8.5

ภาพที่ 58 บทที่ 3 หน้าจอแสดงข้อมูลที่นำเข้าโปรแกรม

ขั้นตอนที่ 3 คลิกที่แท็บ Associate หน้าตาของ workspace จะเปลี่ยนไปเป็นส่วน ของแท็บ Associate แล้วคลิกที่ปุ่ม Choose จะมีลิสต์ (list) แสดงเทคนิคต่างๆ ของการ Associate ให้คลิก เลือกที่เมนูAssociations หลังจากนั้นให้เลือกที่เทคนิคการจ าแนกข้อมูลด้วย Apriori โดยคลิกที่เมนู Apriori

ภาพที่ 59 บทที่ 3 เลือกไฟล์

ขั้นตอนที่ 2 นำข้อมูลที่ได้จัดเตรียมไว้ โดยเลือกที่ Explore >> Openfile เลือกไฟล์ข้อมูลที่ต้องการ นำมาทดสอบ

ภาพที่ 60 บทที่ 3 แสดงการนำข้อมูลเข้าในโปรแกรม Weka

ขั้นตอนที่ 4 เลือก ในการใช้เทคนิคการคำนวณแบบ Association บนแถบ Associateจำเป็นต้อง กำหนดการตั้งค่าในค่า lowerBoundMinSupport คือ การกำหนดค่า MinimumSupport ค่า metricType คือ การกำหนด Type ของกฎความสัมพันธ์ ค่า minMetric คือ การกำหนดค่า minimum ของ Type กฎความสัมพันธ์ ค่า numRules คือ การระบุจำนวนกฎ 10ความสัมพันธ์ที่ ต้องการกำหนดให้ค่า Minimum Support เท่ากับ 0.01 เนื่องจากข้อมูลมีการกระจายกลุ่มข้อมูล อย่างมาก และ มีปริมาณที่สูงเกินไป ทำให้การตั้งค่า Minimum Support ที่มีค่ามากกว่า 0.01 จะไม่ สามารถหากลุ่ม ItemSet และ Best Rules กฎความสัมพันธ์ที่ดีที่สุดคือค่า Minimum Support = 0.1 ค่า Minimum Confident = 0.80 ค่าที่แสดงกฎความสัมพันธ์NumRules เป็น 10 กฎความสัมพันธ์ที่ ดีที่สุด

Weka Explorer					- 0 ×
Preprocess Classify	Cluster Associate Select attributes Visualize	weka.gui.GenericObje	ectEditor	×	
Associator		weka associations Apriori			
Choose Apriori -	N 10 - T 0 - C 0.5 - D 0.05 - U 1.0 - M 0.1 - S - 1.0 - c - 1	About			
	Associator output	Class implementing	n Anriori tana algorithm	Mara	
Start Stop	province	Class implementing i	an Aprion Type algorithm.		
Result list (right-cli	type			Capabilities	
00:23:02 - Apriori	year				
00:23:29 - Apriori	=== Associator model (full training set) ===	car	False		
		classindex	-1		
	Apriori	allab	0.05		
		Ucita	0.05		
	Minimum support: 0.3 (409 instances)	doNotCheckCapabilities	False		
	Minimum metric <confidence>: 0.5</confidence>				
	Number of elected performent fi	IowerBoundMinSupport	0.1		
	Generated sets of large itemsets:	metricTune	Confidence		
	fire of set of large itemsets L(1): 6	mene rype	Confidence		
	Size of see of range roundeds b(r); o	minMetric	0.5		
	Size of set of large itemsets L(2): 6				
	Best rules found:	numRules	10		
	Best Idles Louidi	outputitomSate	Falsa		
	1. meter=NO 687 ==> level=S 475 <conf:(0.69)> lif</conf:(0.69)>	ouputternoets	(aise		
	 year=year2564 622 ==> province=Chiang Mai 419 matageW0 697 ==> province=Chiang Mai 452 	removeAllMissingCols	False	V	
	 year=year2565 742 ==> level=8 479 <conf:(0.65)< li=""> </conf:(0.65)<>				
	5. level=S 859 ==> province=Chiang Mai 540 <conf:< td=""><td>significanceLevel</td><td>-1.0</td><td></td><td></td></conf:<>	significanceLevel	-1.0		
	6. province=Chiang Mai 859 ==> level=8 540 <conf: 7. usaysuss2565 742 ==> province=Chiang Mai 440</conf: 	treatZeroAsMissing	False	V	
	8. level=s 859 ==> year=year2565 479 <conf:(0.56)< td=""><td></td><td>(</td><td></td><td></td></conf:(0.56)<>		(
	9. level=8 859 ==> meter=NO 475 <conf:(0.55)> 1if</conf:(0.55)>	upperBoundMinSupport	1.0		
	10. province=Chiang Mai 859 ==> meter=NO 453 <conf< p=""></conf<>		(R.L.)		
		verbose	Taise		
C] [0000	8740 OK	Canool	
Jan		Coherry C		Cancer)	
OK					

ภาพที่ 3 บทที่ 3 หน้าจอแสดงการตั้งค่ากฎความสัมพันธ์แบบ Apriori

ขั้นตอนที่ 5 หลังจากนั้นคลิกที่ปุ่ม Start Weka จะทำงานและแสดงผลลัพธ์การทำงาน

ภาพที่ 62 บทที่ 3 ผลการจำแนกกลุ่มแบบ Associations : Apriori ในโปรแกรม Weka

3.1.6 สร้างโมเดล Association Rule ด้วยโปรแกรม RapidMiner Studio

ขั้นตอนที่ 1 เปิดโปรแกรม RapidMiner Studio

ภาพที่ 63 บทที่ 3 แสดงการเข้าหน้าจอโปรแกรม RapidMiner Studio

ขั้นตอนที่ 2 เลือก Blank Process เพื่อเปิดหน้าต่างโปรแกรมขึ้นมา

Die Eur Docess Saw Counscious Se	Import Data - Select the da	ata location.				×	-			
🛛 😑 🖬 י 🕨 י							dana, op	seratora etc 🎾	AB DRUGO	•
Repesitory 🛛		Select the	data location.				eters	×		
🚫 Import Data 🛛 🗉 💌	Rapid Miner			*			Cess			
Training Resources (conversed)	Bookmarks	E File Name	Size	Type	Last Modified		wity	init	•	Ø
 Samples Community Samples (conversion) 	🚖 — Last Directory	Q customer-chum-data.xlsx Q personnel_has_research.xlsx	34 KB 637 KB	Microsoft Excel Worksheet Microsoft Excel Worksheet	Aug 24, 2021 Aug 25, 2021	î				0
DB (Legeng)		raw-customer-drum-data.stax RMUTE Dataset.cov RMUTE Dataset.stax	49 KB 50 KB 36 KB	Microsoft Excel Comma Da. Microsoft Excel Comma Da.	Aug 25, 2021 Aug 25, 2021 Aug 25, 2021		-			Φ
						- 1	beed	2001		0
						- 8	1	never		9
							*	SYSTEM	•	Θ
Operators 🗶										
Search for Operators	1									
Data Access (58) Biending (82)	1									
 Cleansing (28) 										
Modeling (168)						~				
Scoting (14) Valutation (30)	RMUTL Dataset.csv									
 Utility (95) 	All Files									
Extensions (133)				The selected file will	I be imported as: CSV	Charlos				
				- Erevious	-> tiet X	Cancel	Ladvanc	REAL PROPERTY.		
Get more operators from the Marketplace				North Concerning of	Contraction (1997)		Instal Con	144 (146) (19.10.000)		

ภาพที่ 64 บทที่ 3 แสดงการเลือกข้อมูลที่จะนำมาวิเคราะห์

enesitory X					Specify you	ır data format			ters ×		
Colonad Data = x									ICSV		
		 Header Row 		10	File Encoding	x-windows-874 *	Use Quotes	•	a Import Co	offouration Wittard	Int
Training Resources (connected)	Pro S	tart Row		10	Escape Character	1	Trim Lines		P import Co	ninguration vitzaru	
Samples	c	olumn Separator	Comma ","		Decimal Character		Skip Comments			ents\data_1.1.csv	0
Community Samples (connected)	Dieb										
Local Repository (Local)							terret		eparators		Ð
DB (Legacy)		1 meter			type		level				
		2 110			nouse		M .		tuotes		ω
		3 NO			small industry		M		iaracter		Do
		4 NO			agriculture		M				-2
		5 NO			agriculture		M		comments		Ø
		3 NO			house		M				
		P NO			amallindustry		N		characters	#	Ð
perators ×		8 NO			small industry		M				1
with for Operators		10 NO			acticulture		M		v advanced pa	irameters.	
		11 NO			agriculture		M		ige compatibil	lity (9.10.011)	
Data Access (58)		12 NO			agriculture		M				
Blending (82)		13 NO			agriculture		M		×		
Cleansing (28)		14 NO			small industry		S		1		1
Scoring (14)		15 NO			small industry		S		ead CSV	utio Core	
Validation (30)		16 NO			house		S		ipidivimer Stu	ad Data Files Text Com	mar
Utility (85)		17 NO			agriculture		S		neer Excel Do	naacts. Isy	IIIIses-
Extensions (2)											
	Lev							🥝 no problems.	rator reads a	an ExampleSet from the	e
Get more operators from the							- Previous	Next X Cancel	CSV file.		

ภาพที่ 4 บทที่ 3 แสดงข้อมูลทั้งหมดของไฟล์ที่นำเข้าข้อมูล

ขั้นตอนที่ 4 โปรแกรมจะแสดงผลของข้อมูลออกมาทั้งหมด โดย Row1 จะแสดงชื่อของแอตทริบิวต์ (Attribute) ในแต่ละแถว และ Row2 เป็นต้นไปจะแสดงข้อมูลที่นำเข้า

Elle Edit Process View 5	20nnections Se	Import Data - Where to store the data?	×	t deta onoratror atr 🔘 All Shutio 🕶
		Where to store the data?		ruasa, operatoraen.
Repository ×	Process			
O Import Data ≡ ▼	Proces	V Dical Repository (Local)		
F Training Resources (con	Process	🛪 🛅 dəta		Configuration Wizard
Community Samples (co		data_1 (#r10/2665, 22:49 G, - 9 xB)		
Samples	Dirp	> 🚞 processes		Jsers\AcenDocuments\data_1.csv
T Local Repository (Local)				a a
Connections				
🕶 🛅 data				D.
data_1 (8/10/2565,				
processes	Rea			Ø
 DB (Legacy) 	Q **			Ø
< 11 >	1			
Operators ×				
crea V				15
				0.011)
odeling (2)				
Predictive (1)				
√x Create Formula				
Associations (1)				
Create Association Rule				a Filer Text Commas Spreadsheer Evral
< 11 >		Name data_1		B LINE TERS SMITTING SPICEREDUCE STARS
We found "MeaningCloud Text				and the formation of a distribution
Plots" and 4 more results in the Marketplace, Show mel.	Leverage the	Country in Local response prevanues_	h XCancel	npresectrom the specified CSV file.

ภาพที่ 5 บทที่ 3 แสดงพื้นที่ในการจัดเก็บข้อมูล

ขั้นตอนที่ 5 ทำการเลือกพื้นที่ในการจัดเก็บข้อมูลเพื่อนำไปใช้ในการวิเคราะห์โปรแกรมRapidMiner Studio

ภาพที่ 67 บทที่ 3 แสดงโมเดล Association Rule ด้วยโปรแกรม RapidMIner Studio

ขั้นตอนที่ 6 สร้างโมเดลเพื่อเข้าสู่กระบวนการวิเคราะห์ข้อมูล Retrieve โหนดนี้หลักการทำงานอ่าน ไฟล์ข้อมูลที่จัดเตรียมไว้ สามารถอ่านไฟล์ได้แค่ไฟล์เดียว

1	meter	type	level	^
2	NO	house	M	
3	NO	small industry	M	
4	NO	agriculture	M	ľ
5	NO	agriculture	М	
6	NO	house	М	
7	NO	house	M	
8	NO	small industry	M	
9	NO	small industry	M	
10	NO	agriculture	M	1
11	NO	agriculture	M	
12	NO	agriculture	M	
13	NO	agriculture	M	
14	NO	small industry	S	
15	NO	small industry	S	
16	NO	house	S	
17	Ю	agriculture	S	1
	110		2	V

ภาพที่ 68 บทที่ 3 วิเคราะห์ข้อมูลการใช้ไฟฟ้า Project โดยโปรแกรม Rapid Miner กำหนดค่า Confident 60%

ผู้วิเคราะห์ข้อมูลนำผลข้อมูลที่ทำการวิเคราะห์มาแสดงผลข้อมูลบนหน้าเว็บไซต์ ร่วมกับการ นำเสนอข้อมูลแบบ visualization ด้วยการแสดงผลข้อมูลในรูปแบบของภาพโดยใช้โปรแกรม

TableauPublic

ภาพที่ 69 บทที่ 3 วิเคราะห์ข้อมูลการใช้ไฟฟ้า Project โดยโปรแกรม Weka กำหนดค่า Confident 60%

3.1.7 การประเมินผล (Evaluation)เป็นขั้นตอนก่อนนำผลไปวิเคราะห์ข้อมูลด้วยการวัดประสิทธิผล ที่ได้กับกับวัตถุประสงค์ที่ตั้งไว้ในตอนแรกว่ามีความสำคัญหรือความน่าเชื่อถือมากน้อยเพียงใด ด้วยการประเมินผลจากโปรแกรม RapidMiner Studio และ Wekaค่า confidence แสดงความเชื่อมั่น ของกฏความสัมพันธ์ที่เมื่อรูปแบบ A เกิดขึ้นแล้วรูปแบบ B จะเกิดขึ้นด้วยเป็นจำนวนกี่เปอร์เซ็นต์ การคำนวณค่า confidence หาได้จาก โดยที่support (A,B) คือ ค่า support ที่รูปแบบ A และ B เกิดขึ้นพร้อม ๆ กัน

Confidence (A => B) = Support (A and B) Support (A)ถ้าค่า Confidence เท่ากับ 1 (100%) หรือ ใกล้เคียง ก็แสดงว่ามีค่าความเชื่อมั่นที่สูงค่า Lift จะเป็นมาตรวัดที่ใช้วัดประสิทธิภาพกฎ ความสัมพันธ์โดยจะวัดอิทธิพลของกฎความสัมพันธ์ที่เกิดขึ้นLift (A => B) = Support (A and B)Support (A) x Support (B) ถ้าค่า Lift มากกว่า 1 เท่า แสดงว่าถ้าเกิด A แล้วมีความน่าจะเป็นที่ จะมีโอกาสเกิด B มากขึ้น

Size of the tree	e: 1	3								
Time taken to b	uild model	: 0 secon	ds							
=== Evaluation (on trainin	g set ===								
Time taken to to	est model	on traini	ng data: 0.	13 second	is					
=== Summary ===										
Correctly Class	ified Inst	ances	799		58.5777	•				
Incorrectly Cla	ssified In	stances	565		41.4223	÷				
Kappa statistic			0.16	87						
Mean absolute e	rror		0.46	28						
Root mean squar	an absolute error ot mean squared error lative absolute error			1						
Relative absolut	te error		92.55	69 %						
Root relative s	quared err	or	96.20	65 %						
Total Number of	Instances		1364							
=== Detailed Ac	curacy By	Class ===								
	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class	
	0.818	0.650	0.561	0.818	0.665	0.190	0.609	0.570	NO	
	0.350	0.182	0.655	0.350	0.456	0.190	0.609	0.619	yes	
Weighted Avg.	0.586	0.418	0.607	0.586	0.562	0.190	0.609	0.594		
=== Confusion M	atrix ===									
a b <	classified	as								
562 125 a	= NO									
440 237 b	= yes									

ภาพที่ 6 บทที่ 3 ผล Accuracy หรือค่าความแม่นยำของโมเดล Decision Tree

ภาพที่ 71 บทที่ 3 ผล Confidence ของโมเดล Association Rule ผ่านโปรแกรม weka

↓	Premises	Conclusion	Support	Confidence	LaPlace	Gain	p-s	Lift	Co
16	NO	S	0.348	0.691	0.897	-0.659	0.031	1.098	1.2
15	small industry	S	0.166	0.679	0.937	-0.323	0.012	1.078	1.1
14	house	S	0.166	0.627	0.922	-0.364	-0.001	0.996	0.5
13	except	s	0.155	0.624	0.925	-0.343	-0.002	0.990	0.9
12	agriculture	S	0.142	0.590	0.920	-0.340	-0.010	0.936	0.5
11	yes	s	0.282	0.567	0.856	-0.711	-0.031	0.901	3.0
10	S	NO	0.348	0.553	0.827	-0.911	0.031	1.098	1.1
9	small industry	yes	0.131	0.538	0.909	-0.357	0.010	1.083	1.0
8	house	NO	0.141	0.530	0.902	-0.390	0.007	1.053	1.0
7	except	NO	0.128	0.515	0.903	-0.370	0.003	1.022	1.0
6	agriculture	NO	0.122	0.505	0.904	-0.361	0.000	1.002	1.0
5	agriculture	yes	0.120	0.495	0.902	-0.363	-0.000	0.998	9.0
4	except	yes	0.121	0.485	0.897	-0.378	-0.003	0.978	0.5

ภาพที่ 72 บทที่ 3 ผล Confidence ของโมเดล Association Rule ผ่านโปรแกรม RapidMiner Studio

3.1.8 สรุปผลการเปรียบเทียบ

ทางผู้จัดทำได้ทำการสร้างโมเดลขึ้นมาทั้งหมด 2 โมเดลเพื่อทำการเปรียบเทียบข้อมูลผลการ วิเคราะห์จากทั้งโมเดล Decision Tree และ Association Rule ทั้งสองโมเดลได้อัพโหลดชุดข้อมูล ผ่านโปรแกรม weka แต่ในโมเดล Association Rule การสร้างโมเดลในอีกหนึ่งโปรแกรมคือ RapidMiner Studio เพื่อสร้างแบบจำลองชุดข้อมูล ทั้งสองโมเดลได้มีข้อมูลที่ตรงกันและสามารถ นำข้อมูลที่ได้มาใช้ประโยชน์ในด้านต่างๆที่สนใจ ทางผู้จัดทำได้ทำการเปรียบเทียบทั้งสองโมเดล จากโมเดล Decision Tree ค่าความแม่นยำจะอยู่ที่ 58.57% และโมเดล Association Rule ค่า Confidence จะอยู่ที่ 0.69 จะเห็นได้ว่าโมเดล Association Rule จะมีประสิทธิภาพในการสร้างกฎ ความสัมพันธที่มากกว่า

TableauPublic

ภาพที่ 73 บทที่ 3 กราฟแผนภูมิวงกลมของระดับการใช้ไฟฟ้าและการใช้มิเตอร์ขนาด 15(45) และ 30(100) โดยโปรแกรม power bi

ภาพที่ 74 บทที่ 3 กราฟแผนภูมิวงกลมของการใช้ไฟฟ้าใน3จังหวัด โดยโปรแกรม power bi

3.2 แผนภาพบริบท (Context Diagram)

แผนภาพบริบทเป็นแผนภาพที่แสดงถึงภาพรวมของระบบ และความสัมพันธ์ระบบกับ สิ่งแวดล[้]อมที่เกี่ยวข[้]องกับระบบรวมถึงเหตุการณ์ต่าง ๆ ที่ใช้ในระบบการพัฒนาเว็บไซต์สำหรับ วิเคราะห์ข้อมูลการใช้ไฟฟ้าในบ้านที่อยู่อาศัย ในปี 2564–2565 ซึ่งสามารถแบ่งออกมาได้ ดังนี้ **ตารางที่ 3.1** ตารางรายละเอียดของเอ็กเทอร์นัลเอ็นทิตี้ และโปรเซสที่เกี่ยวข[้]อง

ผู้ใช้	รายการข้อมูล	รายการโปรเซส
1.) บุคคลทั่วไป	1.) แฟ้มข้อมูลผู้ใช้งาน	1.) ตรวจสอบการเข้าสู่ระบบ
2.) สมาชิก	2.) แฟ้มข้อมูลการใช้ไฟฟ้า	2.) จัดการข้อมูลส่วนตัว
3.) ผู้ดูแลเว็บไซต์	3.) แฟ้มข้อมูลการดาวน์โหลดไฟล์	3.) จัดการข้อมูลหน้าเว็บไซต์
	4.) แฟ้มข้อมูลการจัดเก็บไฟล์	4.) รายงานข้อมูลสารสนเทศของ
		เว็บไซต์

จากการกำหนดผู้ใช้และความต้องการ ที่ใช้ระบบ คือ บุคคลทั่วไป, สมาชิก และผู้ดูแลเว็บไซต์ สามารถแสดงความสัมพันธ์ด้วยแผนผังบริบทดังนี้

ภาพที่ 75 บทที่ 3 แผนภาพบริบท (Context Diagram)

จากรูปภาพที่ 3.34 เป็นแผนภาพบริบทระบบของการพัฒนาเว็บไซต์สำหรับการวิเคราะห์ ข้อมูลการใช้ไฟฟ้าในบ้านที่อยู่อาศัย ในปี 2564-2565 โดยสามารถแบ่งผู้ใช้ออกเป็น 3 ประเภท ดังนี้

 บุคคลทั่วไป สามารถดูข้อมูลบทความเกี่ยวกับเว็บไซต์และการใช้ไฟฟ้า และเกี่ยวกับ ผู้จัดทำเว็บไซต์ได้ สามารถดูสารสนเทศกระบวนการวิเคราะห์ข้อมูลได้ สามารถดูสารสนเทศการ วิเคราะห์ข้อมูล decision tree ได้ สามารถดูสารสนเทศรายงานการวิเคราะห์ข้อมูลต่างๆ ข แสดงผลในรูปแบบของ data Visualization ได้ ดูสารสนเทศรายงานการวิเคราะห์ข้อมูลอื่นๆ แสดงผลในรูปแบบของ data Visualization ได้ และดูสารสนเทศแผนภูมิรูปภาพต่างๆ

2) สมาชิก สามารถกรอกข้อมูลการใช้ไฟฟ้าบนเว็บไซต์ กรณีที่ ข้อมูลมีจำนวนน้อยได้ สามารถอัปโหลดชุดข้อมูลเกี่ยวกับการใช้ไฟฟ้าที่มีจำนวนมากๆ เพื่อให้ผู้ดูแลเว็บไซต์นำข้อมูลไป จัดการข้อมูลที่อัปเดตลงบนเว็บไซต์ สามารถดาวน์โหลดไฟล์ชุดข้อมูลที่ผู้ดูแลเว็บไซต์เปิดให้ดาวน์ โหลดเพื่อนำไปศึกษาหรือใช้งานต่อได้ สามารถดูสารสนเทศกระบวนการวิเคราะห์ข้อมูลได้ สามารถดูสารสนเทศการวิเคราะห์ข้อมูล decision tree ได้ สามารถดูสารสนเทศรายงานการ วิเคราะห์ข้อมูลต่างๆ แสดงผลในรูปแบบของ data Visualization ได้ ดูสารสนเทศรายงานการ วิเคราะห์ข้อมูลอื่นๆ แสดงผลในรูปแบบของ data Visualization ได้ และดูสารสนเทศแผนภูมิ รูปภาพต่างๆ

3.) ผู้ดูแลเว็บไซต์ สามารถเพิ่ม ลบ และแก้ไขข้อมูลสารสนเทศการวิเคราะห์ข้อมูลการใช้ ไฟฟ้าได้ สามารถจัดการสมาชิก ลบ แก้ไข ข้อมูล และดูข้อมูลสมาชิกได้ สามารถดาวน์โหลดไฟล์ ชุดข้อมูลที่ ผู้ใช้งานอัปโหลดเข้ามา เพื่อนำไปทำ data cleaning ให้ข้อมูลนั้นพร้อมนำมาอัปเดตบน เว็บไซต์ได้ สามารถกรอกข้อมูลการใช้ไฟฟ้า กรณีที่ ข้อมูลมีจำนวนน้อยได้ สามารถอัปเดตชุด ข้อมูลการใช้ไฟฟ้าที่มีจำนวนมากๆ เพื่อให้ข้อมูลที่อัปโหลดมานั้นนำใช้แสดงผลในรูปแบบของ data Visualization บนเว็บไซต์ได้ สามารถดูสารสนเทศกระบวนการวิเคราะห์ข้อมูลได้ สามารถดู สารสนเทศการวิเคราะห์ข้อมูล decision tree ได้ สามารถดูสารสนเทศรายงานการวิเคราะห์ข้อมูล ต่างๆ แสดงผลในรูปแบบของ data Visualization ได้ ดูสารสนเทศแผนภูมิรูปภาพต่างๆ

3.5 แผนภาพกระแสข้อมูล Data Flow Diagram

แผนภาพกระแสข้อมูลเป็นแผนภาพที่แสดงถึงกระบวนการทำงานต่าง ๆ ของระบบว่ามีผู้ใช้งาน เกี่ยวข้องกับกระบวนการทำงานในด้านใดบ้าง และแสดงการไหลของข้อมูลในกระบวนการรวมถึง การจัดเก็บ

ภาพที่ 76 บทที่ 3 แผนภาพ Data Flow Diagram

พจนานุกรมข้อมูล (Data Dictionary)

การวิเคราะห์เพื่อให้ได้มาซึ่งแผนภาพอีอาร์ หรืออีอาร์ไดอะแกรมนั้นจะให้พื้นฐานหลักอยู่ 3 ประการด**้วยกัน ได้แก่**

3.3.1 เอ็นติตี้ (Entity) คือ บุคคล วัตถุ สถานที่ และรวมถึงเหตุการณ์ที่ทำให้เกิดกลุ่มของ ข้อมูลที่ต้องการจัดเก็บ ซึ่งบ่งชี้ถึงความเป็นเอกลักษณ์เฉพาะตัวได้ (Uniquely identifiable)

3.3.2 ความสัมพันธ์(Relation) คือ ค่าความสัมพันธ์ระหว่างเอ็นติตี้

3.3.3 แอททริบิวต์(Attribute) คือ คุณสมบัติของเอ็นติต

ตารางที่ 10 บทที่ 3 แสดงเอ็นติตี้ทั้งหมดภายในกระบวนการของการพัฒนาเว็บไซต์สำหรับการ วิเคราะห์การใช้ไฟฟ้าในบ้านที่อยู่อาศัยในปี 2564-2565

ลำดับ	ชื่อตาราง	ประเภท	รายละเอียด
D1	Users	Master	แฟ้มข้อมูลผู้ใช้งาน
D2	Data	Transaction	แฟ้มข้อมูลการใช้ไฟฟ้า
D3	downloadfile	Transaction	แฟ้มข้อมูลการดาวน์โหลดไฟล์
D4	uploadfile	Transaction	แฟ้มข้อมูลการจัดเก็บไฟล์

คำอธิบาย: ประเภทของตาราง ได้แก่

master หมายถึง ตารางข้อมูลหลัก

transaction หมายถึง ตารางที่มีการเปลี่ยนแปลงของข้อมูล

reference หมายถึง ตารางที่มีการอ้างอิง

คำอธิบาย: ประเภทของตาราง ได้แก่ master หมายถึง ตารางข้อมูลหลัก transaction หมายถึง ตารางที่มีการเปลี่ยนแปลงของข้อมูล reference หมายถึง ตารางที่มีการอ้างอิง

ตารางที่ 11 บทที่ 3 แสดงรายละเอียดของตาราง user

ชื่อตาราง : Users				
ประเภทตาราง : Master				
คำอธิบาย : แฟ้มข้อมูล				
คีย์หลัก : id				
เขตข้อมูล	ชนิดและขนาด	ความหมาย	ตัวอย่าง	
id	varchar(6)	รหัสผู้ใช้งาน	1	
username	varchar(100)	ผู้สมาชิก	admin	
e-mail	varchar(100)	อีเมล์	benceo@gmail.com	
password	varchar(50)	รหัสผ่าน	123456	
address	varchar(255)	ที่อยู่	84 ม.7 ต.สันทราย อ.	
			เมือง จ.เชียงใหม่	
Status	tiny int(1)	สิทธิ์	1	
tel	varchar(10)	เบอร์โทร	0805157370	
profile	varchar(100)	รูปภาพผู้ใช้งาน	35456.jpg	

คำอธิบาย: สิทธิ์ ได้แก่

หมายเลข 1 หมายถึง admin ผู้ดูแลเว็บไซต์ หมายเลข 2 หมายถึง member ผู้สมาชิกเว็บไซต์

ชื่อตาราง : Data				
ประเภทตาราง :	Master			
คำอธิบาย : เก็บร	ข้อมูลผู้ใช้งาน			
คีย์หลัก : data_io	k			
เขตข้อมูล	เขตข้อมูล ชนิดและขนาด ความหมาย ตัวอย่าง			
data_id	int(11)	ลำดับข้อมูล	5	
Province	varchar(100)	จังหวัด	้น่าน	
Туре	varchar(100)	ประเภท	บ้าน	
Watt	varchar(100)	จำนวนวัตต์	1023	
Meter	varchar(100)	ขนาดมิเตอร์	30(100)A	
Date	timestamp	วัน/เดือน/ปี	2022-09-05	
			20:59:14	

ตารางที่ 12 บทที่ 3 แสดงรายละเอียดของตาราง Data

ตารางที่ 13 บทที่ 3 แสดงรายละเอียดของตาราง downloadfile

ชื่อตาราง : downloadfile				
ประเภทตาราง : Master				
คำอธิบาย : แฟ้มข้อมูล	งการจัดเก็บไฟล์			
คีย์หลัก : fileID_download				
เขตข้อมูล	ชนิดและขนาด	ความหมาย	ตัวอย่าง	
fileID_download	int(11)	ลำดับไฟล์	98	
filedownload	varchar(100)	ชื่อชุดข้อมูล	แบบฟอร์ม.csv	
filesize	varchar(100)	ขนาดไฟล์	68 B	
datedown	timestamp	วัน/เดือน/ปี	2022-09-05	
			20:59:14	

	1 4	- da	7		und a sudfil a
ตารางท	14	บทท	3	แสดงรายละเอยดของตาราง	uploadfile

ชื่อตาราง : uploadfile				
ประเภทตาราง : Master				
คำอธิบาย : แฟ้มข้อมูเ	ลการจัดเก็บไฟล ์			
คีย์หลัก : fileID				
เขตข้อมูล	ชนิดและขนาด	ความหมาย	ตัวอย่าง	
fileID	int(11)	ลำดับไฟล์	98	
file_username	varchar(100)	ชื่อผู้อัพโหลดไฟล์	Admin	
fileupload	varchar(100)	ชื่อชุดข้อมูล	แบบฟอร์ม.csv	
filesize	varchar(100)	ขนาดไฟล์	68 B	
dateup	timestamp	วัน/เดือน/ปี	2022-09-05	
			20:59:14	
approve	bit(1)	ไฟล์อนุมัติ	1	

3.4 ความสัมพันธ์ของข้อมูล (ER-Diagram)

ภาพที่ 7 บทที่ 3 แสดงภาพความสัมพันธ์ของข้อมูลการพัฒนาเว็บไซต์สำหรับการวิเคราะห์ข้อมูล การใช้ไฟฟ้าในบ้านที่อยู่อาศัย ในปี 2564-2565

 1.)ตาราง users ความสัมพันธ์ของข้อมูลแบบ One – to – Many กับตาราง Data คือ ผู้ใช้งานหนึ่งคนสามารถเพิ่มข้อมูลการใช้ไฟฟ้าได้หลายข้อมูลการใช้ไฟฟ้า และแต่ละข้อมูลการใช้ ไฟฟ้าจะมีผู้ใช้งานจัดการข้อมูลเพียงคนเดียวเท่านั้น

2.)ตาราง users ความสัมพันธ์ของข้อมูลแบบ One – to – Many กับตาราง downloadfile
 คือ ผู้ใช้งานหนึ่งคนสามารถดาวน์โหลดชุดข้อมูลได้หลายไฟล์ และแต่ละไฟล์ชุดมูลจะมีผู้ใช้งาน
 ดาวน์โหลดชุดข้อมูลเพียงคนเดียวเท่านั้น

 3.)ตาราง users ความสัมพันธ์ของข้อมูลแบบ One – to – Many กับตาราง uploadfile คือ ผู้ใช้งานหนึ่งคนสามารถอัปโหลดชุดข้อมูลได้หลายไฟล์ และแต่ละไฟล์ชุดมูลจะมีผู้ใช้งานอัปโหลด ชุดข้อมูลเพียงคนเดียวเท่านั้น

คำอธิบายกระบวนการ

ตารางที่ 15 บทที่ 3 DFD Number 1 ตรวจสอบการเข้าสู่ระบบ

Process Description	
System	ระบบการข้อมูลสารสนเทศการใช้ไฟฟ้า
DFD Number	1.0
Process Name	ตรวจสอบการเข้าสู่ระบบ
Input Data Flow	ข้อมูลชื่อผู้ดูแลระบบและรหัสผ่าน, ข้อมูลชื่อผู้สมาชิกและรหัสผ่าน
Output Data Flow	ข้อมูลสิทธิการเข้าระบบ
Data Store Used	แฟ้มข้อมูลผู้ใช้งาน
Description	เป็นกระบวนการตรวจสอบ ข้อมูลและรหัสผ่านข้อผู้ใช้ สำหรับ ผู้ดูแล
	เว็บไซต์
	และสมาชิก

ตารางที่ 16 บทที่ 3 DFD Number 2 จัดการข้อมูลส่วนตัว

Process Description	
System	ระบบการข้อมูลสารสนเทศการใช้ไฟฟ้า
DFD Number	2.0
Process Name	จัดการข้อมูลส่วนตัว
Input Data Flow	ข้อมูลจัดการข้อมูลผู้ใช้ระบบ, ข้อมูลการแก้ไขข้อมูลส่วนตัว
Output Data Flow	ข้อมูลผู้ใช้ระบบ, ข้อมูลส่วนตัว
Data Store Used	แฟ้มข้อมูลผู้ใช้งาน
Description	เป็นการจัดการข้อมูลส่วนตัวของผู้ใช้ในระบบ

Process Description	
System	ระบบการข้อมูลสารสนเทศการใช้ไฟฟ้า
DFD Number	3.0
Process Name	จัดการข้อมูลหน้าเว็บไซต์
Input Data Flow	ข้อมูลจัดการข้อมูลการอัปโหลด, ข้อมูลจัดการข้อมูลการอัปโหลด,
	ข้อมูลการ
	จัดการใช้ไฟฟ้า, ข้อมูลการอับโหลดชุดข้อมูล
Output Data Flow	ข้อมูลการดาวน์โหลดชุดข้อมูลของสมาชิก, ข้อมูลการอับโหลดชุดข้อมูล
Data Store Used	แฟ้มข้อมูลการดาวน์โหลดไฟล์, แฟ้มข้อมูลการจัดเก็บไฟล์
Description	เป็นกระบวนการจัดการหน้าเว็บไซต์ ของผู้ดูแลเว็บไซต์ และสมาชิกเข้า
	ใช้งานเว็บไซต์ โดยจะมีผู้ดูแลเว็บไซต์ที่สามารถแก้ไขอัพเดตข้อมูล
	สารสนเทศภายในเว็บไซต์โด้

ตารางที่ 17 บทที่ 3 DFD Number 3 จัดการข้อมูลหน้าเว็บไซต์

ตารางที่ 18 บทที่ 3 DFD Number 4 รายงานข้อมูลสารสนเทศ ของเว็บไซต์

Process Description	
System	ระบบการข้อมูลสารสนเทศการใช้ไฟฟ้า
DFD Number	4.0
Process Name	แฟ้มข้อมูลการใช้ไฟฟ้าบนเว็บไซต์, แฟ้มข้อมูลการดาวน์โหลดไฟล์
Input Data Flow	ข้อมูลสารสนเทศการไฟฟ้าประเทศไทย, ข้อมูลสารสนเทศกระบวนการ
	วิเคราะห์ข้อมูล,ข้อมูลดาวน์โหลดชุดข้อมูล, ข้อมูลสารสนเทศการไฟฟ้า
	บนเว็บไซต์, ข้อมูลแดชบอร์ด
Output Data Flow	ข้อมูลการดาวน์โหลดชุดข้อมูลของสมาชิก, ข้อมูลการอัปโหลดชุดข้อมูล
Data Store Used	แฟ้มข้อมูลการใช้ไฟฟ้าบนเว็บไซต์, แฟ้มข้อมูลการดาวน์โหลดไฟล์
Description	เป็นกระบวนการแสดงผลลัพธ์แดชบอร์ดเกี่ยวกับไฟฟ้าให้กับเว็บไซต์
	โดยแสดงผลในแบบ data visualization โดยสิทธิสมาชิกสามารถ
	ดาวน์โหลดข้อมูลได้

3.5 ออกแบบหน้าเว็บไซต์

โครงสร้างระบบการพัฒนาเว็บไซต์สำหรับการวิเคราะห์ข้อมูลการใช้ไฟฟ้าในบ้านที่อยู่อาศัย ในปี 2564-2565 เพื่อใช้ในการเผยแพร่ข้อมูลบนเว็บไซต์

ภาพที่ 78 บทที่ 3 แสดงโครงสร้างระบบการพัฒนาเว็บไซต์สำหรับการวิเคราะห์ข้อมูลการใช้ไฟฟ้า ในบ้านที่อยู่อาศัยในปี 2564–2565 เพื่อใช้ในการเผยแพร่ข้อมูลบนเว็บไซต์ การออกแบบ Wireframe หน้าจอเว็บไซต์มีการออกแบบโดยแบ่งตามประเภทของผู้ใช้งานซึ่ง ประกอบด้วย 3 ผู้ใช้งาน ดังนี้ 3.5.1.) บุคคลทั่วไป 3.5.2.) สมาชิก 3.5.3.) ผู้ดูแลเว็บไซต์

หน้า HOME

ภาพที่ 8 บทที่ 3 หน้าจอโฮมแพจ

หน้า Resgister

Resgister	sign in
username	
email	
password	
create	

ภาพที่ 80บทที่ 3 หน้าจอสมัครสมาชิก

หน้า จัดการสมัครชิก (ต่อ)

แก้ไขสมัครชิ∩				
username				
password				
email				
	บันทึก			

ภาพที่ 9 บทที่ 3 หน[้]าจอสมัครสมาชิก

หน้า Login

resaister	
	logo
	username
	password
	login

ภาพที่ 10 บทที่ 3 หน[้]าจอล็อกอิน

หน้า จัดการสมัครชิก

จัดการสมัครชิก					
	name	email			
1			ແກ້ໄข		
2			ແກ້ໄข		

ภาพที่ 83 บทที่ 3 หน**้**าจอจัดการสมาชิก

หน้า HOME

ภาพที่ 84 บทที่ 3 หน[้]าจอแสดงภาพ

หน้า วิเคราะห์

ภาพที่ 85 บทที่ 3 หน[้]าจอวิเคราะห์ข้อมูล

หน้า การอัพโหลดไฟล์

ภาพที่ 86 บทที่ 3 หน้าจอการอัพโหลดข้อมูล

หน้า ดาวน์โหลดข้อมูล

ภาพที่ 87 บทที่ 3 หน้าจอดาว์นโหลดข้อมูล

หน้า คำนวนโซล่าเซลล์

หัวข้อหมวดหมู่				
	คำนวนโซล่าเซลล์			
ຈຳນວນວັຕຕົ	ยืนยัน			

ภาพที่ 88 บทที่ 3 หน้าจอระบบคำนวณโซล่าเซลล์

หน้า คำนวนโซล่าเซลล์ (ต่อ)

ภาพที่ 89 บทที่ 3 หน้าจอแสดงข้อมูลการคำนวณโซล่าเซลล์

3.6 บทสรุป

ระบบของเว็บไซต์วิเคราะห์ข้อมูลการใช้ไฟฟ้าในที่อยู่อาศัยในปี 2564-2565 ทางผู้จัดทำ ได้ทำการแสดงข้อมูลการใช้ไฟฟ้าโดยนำจังหวัดที่มีความแตกต่างในการใช้ไฟฟ้ามาทั้งหมด 3 จังหวัด 1.จังหวัดเชียงใหม่ 2.แพร่ 3.น่าน และมีปะเภทของที่อยู่อาศัยที่แตกต่างประกอบด้วย 4 ประเภท 1.บ้าน 2.ที่อยู่อาศัยที่ได้รับการยกเว้นค่าไฟ 3.เกษตรกรรม 4.ธุรกิจขนาดเล็ก เพื่อได้ ทราบถึงการใช้ไฟฟ้าของแต่ละประเภท เพื่อนำไปใช้ประโยชน์ในด้านต่างๆ เช่น การวิเคราะห์ขนาด มิเตอร์ไฟฟ้าให้เหมาะสมกับการใช้งานทางผู้จัดทำได้เพิ่มระบบการวิเคราะห์โซล่าเซลล์ลงไปด้วย นั้นเพื่อได้รับประโยชน์ให้ได้มากที่สุดระบบโซล่าเซลล์จะสามารถคำนวณผ่านบิลค่าไฟฟ้าที่ได้รับใน แต่ละเดือน และยังมีหน้า AMR คือการอ่านค่าผ่านระบบมิเตอร์อัตโนมัติและนำค่าหน่วยไฟฟ้ามา คำนวณโซล่าเซลล์โดยที่ไม่ต้องรอบิลค่าไฟฟ้าในแต่ละเดือนยังทราบถึงพฤติกรรมการใช้ไฟฟ้าใน แต่ละเดือน วัน ปี สามารถนำข้อมูลที่ได้มาปรับเปลี่ยนวิธีการใช้ไฟฟ้าเพื่อให้เกิดประโยชน์สูงสุด ทางผู้จัดทำได้นำข้อมูลสารสนเทศมาทำการแสดงผลออกทางหน้าจอ ของเว็บไซต์ที่จะเผยแพร่บน Web browser ใช้ Adobe XD ในการออกแบบหน้าต่างรายละเอียดของเว็บไซต์ และใช้ Visual Studio Code ในการเขียนพัฒนาเว็บไซต์